
Dr. Moustafa Alzantot

Information System Design
Lecture 6.5 : Design Patterns (Contd.)

GoF Design Patterns

GoF Design Patterns

• GoF book describes 23 design patterns are
categorized by their purpose into 3 categories:

• Creational: related to how we create new objects.

• Structural: concerned with patterns that use
compositions of objects and classes to generate
larger structures with new functionalities.

• Behavioral: concerned with interactions between
classes to divide responsibilities among
themselves.

Structural Patterns Example

Decorator Pattern

Decorator Pattern

Decorator pattern is a widely used example of structural patterns in
GoF book.

What problem does decorator solve ?
•Dynamically adding (or removing) functionalities to an individual
objects without affecting other instances from the same class.

•Provides a more flexible alternative than subclassing to extend
functionalities of classes/objects.

Decorator Pattern

Examples:
•Example 1: Imagine you have a GUI component (e.g. TextView), and you
want to create a new extended version of it . For example:

•TextViewWithScrollbar: adds scrollbar to scroll through the content.

•TextViewWith3DBorder: adds a 3D border around that component.

•Example 2: Imagine you have a FileStream class that reads/writes data
from/to a file. Ou want to enhance the performance: for example

• Adding data compression

•Adding data encryption

Decorator Pattern

Decorators offer a more flexible way to add functionality than
inheritance (subclassing).

Sometimes a large number of independent extensions are possible ,
and would produce a an explosion of subclasses to support every
combination of extensions.

Decorator Pattern

Decorators offer a more flexible way to add functionality than inheritance
(subclassing).

TextView

TextView
+ draw()

ScrollBarTextView

TextView
+ draw()

Border3DTextView

TextView
+ draw()

How would you create a Fancy TextView that has both
scrollbar and 3D border ?

FancyTextView

TextView
+ draw()

Decorator Pattern

Decorator pattern extend the functionality by wrapping an object within another
“decorator” object.

Decorators can be wrapped around each other, therefore allowing for flexible way to
combine new added functionalities.

Decorator Pattern

Decorator patter

•Define a new “Decorator” class that wraps the
original class

•Decorator class has the same interfaces
“Component”

•Decorator class encloses a component object
inside it

•Decorator forwards requests to the component
and may perform actions before or after any
forwarding.

Decorator Pattern

Solution
<<interface>  
IComponent

TextView
TextView

TextView

TextView
+ draw()

<<interface>  
Decorator

- component: IComponent

+ Decorator(component)
+ draw()

FancyDecorator

- component: IComponent

+ draw()

ScrollBarDecorator

- component: IComponent

+ draw()

Border3DDecorator

- component: IComponent

+ draw()

Decorator Pattern

Decorator pattern extend the functionality by wrapping an object within another
“decorator” object.

Decorators can be wrapped around each other, therefore allowing for flexible way to
combine new added functionalities.

IComponent* text_view = new TextView();
IComponent* scrollbar_text_view = new ScrollBarDecorator(text_view);
IComponent* border_3d_scrollbar_text = new Border3DDecorator(scrollbar_text_view);

Decorator Pattern: function decorators

Another application of decorator patterns.

A common practice in programming languages such as C#, Python and
Javascript.

A decorator wraps one piece of code with another.

Function Decorators: Python Example

Output: 
hello world

def say_hello():
 return "hello world"

func = say_hello
func()

Function Decorators: Python Example

def upper_case_decorator(function):
 def wrapper():
 output = function()
 return output.upper()
 return wrapper

func = upper_case_decorator(say_hello)
func()

Output: 
HELLO WORLD

upper_case_decorator is wrapped
around say_hello function

Function Decorators: Python Example

def upper_case_decorator(function):
 def wrapper():
 output = function()
 return output.upper()
 return wrapper

@upper_case_decorator
def say_hello():
 return "hello world"

@upper_case_decorator
def say_bye():
 return "bye"

print(say_hello())
print(say_bye())

In Python, you can use @ function
annotation to decorate a function with
another.

Behavioral Patterns Example

Observer Pattern

Observer Pattern

Goal of Observer Pattern:
 
You have an object with some internal state. The state value for that object could
change during the program. Whenever an event happens that causes the value of this
object state to change, another objects should be updated.
•This can be a 1:many relationship. I.e. many objects should notified of the event.
•We need to reduce the coupling between objects.

This is a very common situation in any complex system.

Observer Pattern

Common Use Cases of Observer Pattern:
• Handling GUI events (e.g. button clicked)

•Responding to file transfer operations (e.g. transfer has finished, error
happened)

•Monitoring sensor values.

Observer Pattern

Polling Observer Pattern
a.k.a. publisher-subscriberSource: https://refactoring.guru/design-patterns/observer

Ok !

Ok !

Ok !

Ok !

Ok !

Ok !

Ok !

Observer Pattern

Key Players:
•Subject:
•maintains a list of observers.

•Provides an interface for registering (adding)/unregistering (removing) observers..

• Maintains the object status, and when status changes it will send notification to all
registered observers.

•Observer: An interface for Observers who are interesting in receiving notification for value
changes.

•ConcreteObserver: Implements Observer interface. Will provide its own custom logic to
handle the event notifications.

Observer Pattern
UML Class Diagram

Observer Pattern
UML Sequence Diagram

•Both observers o1 and o2 registers for notification
(by calling subject attach method).

•A change in subject state, causes a call to
notify() method which will call update() 
method of all attached observers. 

•Observers interested in getting the new state value
will call subject getState() function to read the
new value.

